Copied to
clipboard

G = C2×C3315D4order 432 = 24·33

Direct product of C2 and C3315D4

direct product, metabelian, supersoluble, monomial

Aliases: C2×C3315D4, C634C2, C6234D6, C3337(C2×D4), (C2×C62)⋊12S3, (C32×C6)⋊15D4, C63(C327D4), (C3×C62)⋊16C22, C335C413C22, C232(C33⋊C2), (C32×C6).104C23, C34(C2×C327D4), (C3×C6)⋊13(C3⋊D4), (C22×C6)⋊4(C3⋊S3), C6.48(C22×C3⋊S3), C3222(C2×C3⋊D4), (C2×C335C4)⋊10C2, C223(C2×C33⋊C2), (C3×C6).193(C22×S3), (C22×C33⋊C2)⋊6C2, (C2×C33⋊C2)⋊14C22, C2.10(C22×C33⋊C2), (C2×C6)⋊11(C2×C3⋊S3), SmallGroup(432,729)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C2×C3315D4
C1C3C32C33C32×C6C2×C33⋊C2C22×C33⋊C2 — C2×C3315D4
C33C32×C6 — C2×C3315D4
C1C22C23

Generators and relations for C2×C3315D4
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=fbf=b-1, cd=dc, ece-1=fcf=c-1, ede-1=fdf=d-1, fef=e-1 >

Subgroups: 3944 in 756 conjugacy classes, 235 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C32, Dic3, D6, C2×C6, C2×C6, C2×D4, C3⋊S3, C3×C6, C3×C6, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C33, C3⋊Dic3, C2×C3⋊S3, C62, C62, C2×C3⋊D4, C33⋊C2, C32×C6, C32×C6, C32×C6, C2×C3⋊Dic3, C327D4, C22×C3⋊S3, C2×C62, C335C4, C2×C33⋊C2, C2×C33⋊C2, C3×C62, C3×C62, C3×C62, C2×C327D4, C2×C335C4, C3315D4, C22×C33⋊C2, C63, C2×C3315D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, C3⋊D4, C22×S3, C2×C3⋊S3, C2×C3⋊D4, C33⋊C2, C327D4, C22×C3⋊S3, C2×C33⋊C2, C2×C327D4, C3315D4, C22×C33⋊C2, C2×C3315D4

Smallest permutation representation of C2×C3315D4
On 216 points
Generators in S216
(1 10)(2 11)(3 12)(4 9)(5 83)(6 84)(7 81)(8 82)(13 141)(14 142)(15 143)(16 144)(17 145)(18 146)(19 147)(20 148)(21 149)(22 150)(23 151)(24 152)(25 106)(26 107)(27 108)(28 105)(29 139)(30 140)(31 137)(32 138)(33 115)(34 116)(35 113)(36 114)(37 119)(38 120)(39 117)(40 118)(41 123)(42 124)(43 121)(44 122)(45 127)(46 128)(47 125)(48 126)(49 131)(50 132)(51 129)(52 130)(53 154)(54 155)(55 156)(56 153)(57 172)(58 169)(59 170)(60 171)(61 176)(62 173)(63 174)(64 175)(65 180)(66 177)(67 178)(68 179)(69 184)(70 181)(71 182)(72 183)(73 188)(74 185)(75 186)(76 187)(77 215)(78 216)(79 213)(80 214)(85 196)(86 193)(87 194)(88 195)(89 200)(90 197)(91 198)(92 199)(93 204)(94 201)(95 202)(96 203)(97 208)(98 205)(99 206)(100 207)(101 212)(102 209)(103 210)(104 211)(109 167)(110 168)(111 165)(112 166)(133 164)(134 161)(135 162)(136 163)(157 192)(158 189)(159 190)(160 191)
(1 162 182)(2 183 163)(3 164 184)(4 181 161)(5 177 132)(6 129 178)(7 179 130)(8 131 180)(9 70 134)(10 135 71)(11 72 136)(12 133 69)(13 74 30)(14 31 75)(15 76 32)(16 29 73)(17 216 87)(18 88 213)(19 214 85)(20 86 215)(21 109 89)(22 90 110)(23 111 91)(24 92 112)(25 45 63)(26 64 46)(27 47 61)(28 62 48)(33 156 96)(34 93 153)(35 154 94)(36 95 155)(37 158 98)(38 99 159)(39 160 100)(40 97 157)(41 170 104)(42 101 171)(43 172 102)(44 103 169)(49 65 82)(50 83 66)(51 67 84)(52 81 68)(53 201 113)(54 114 202)(55 203 115)(56 116 204)(57 209 121)(58 122 210)(59 211 123)(60 124 212)(77 148 193)(78 194 145)(79 146 195)(80 196 147)(105 173 126)(106 127 174)(107 175 128)(108 125 176)(117 191 207)(118 208 192)(119 189 205)(120 206 190)(137 186 142)(138 143 187)(139 188 144)(140 141 185)(149 167 200)(150 197 168)(151 165 198)(152 199 166)
(1 211 112)(2 109 212)(3 209 110)(4 111 210)(5 78 99)(6 100 79)(7 80 97)(8 98 77)(9 165 103)(10 104 166)(11 167 101)(12 102 168)(13 153 128)(14 125 154)(15 155 126)(16 127 156)(17 120 50)(18 51 117)(19 118 52)(20 49 119)(21 124 163)(22 164 121)(23 122 161)(24 162 123)(25 115 188)(26 185 116)(27 113 186)(28 187 114)(29 174 96)(30 93 175)(31 176 94)(32 95 173)(33 73 106)(34 107 74)(35 75 108)(36 105 76)(37 148 131)(38 132 145)(39 146 129)(40 130 147)(41 152 135)(42 136 149)(43 150 133)(44 134 151)(45 55 144)(46 141 56)(47 53 142)(48 143 54)(57 90 184)(58 181 91)(59 92 182)(60 183 89)(61 201 137)(62 138 202)(63 203 139)(64 140 204)(65 189 86)(66 87 190)(67 191 88)(68 85 192)(69 172 197)(70 198 169)(71 170 199)(72 200 171)(81 214 208)(82 205 215)(83 216 206)(84 207 213)(157 179 196)(158 193 180)(159 177 194)(160 195 178)
(1 49 201)(2 202 50)(3 51 203)(4 204 52)(5 72 155)(6 156 69)(7 70 153)(8 154 71)(9 93 130)(10 131 94)(11 95 132)(12 129 96)(13 97 169)(14 170 98)(15 99 171)(16 172 100)(17 109 62)(18 63 110)(19 111 64)(20 61 112)(21 28 87)(22 88 25)(23 26 85)(24 86 27)(29 102 39)(30 40 103)(31 104 37)(32 38 101)(33 133 178)(34 179 134)(35 135 180)(36 177 136)(41 158 75)(42 76 159)(43 160 73)(44 74 157)(45 90 213)(46 214 91)(47 92 215)(48 216 89)(53 182 82)(54 83 183)(55 184 84)(56 81 181)(57 207 144)(58 141 208)(59 205 142)(60 143 206)(65 113 162)(66 163 114)(67 115 164)(68 161 116)(77 125 199)(78 200 126)(79 127 197)(80 198 128)(105 194 149)(106 150 195)(107 196 151)(108 152 193)(117 139 209)(118 210 140)(119 137 211)(120 212 138)(121 191 188)(122 185 192)(123 189 186)(124 187 190)(145 167 173)(146 174 168)(147 165 175)(148 176 166)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)(145 146 147 148)(149 150 151 152)(153 154 155 156)(157 158 159 160)(161 162 163 164)(165 166 167 168)(169 170 171 172)(173 174 175 176)(177 178 179 180)(181 182 183 184)(185 186 187 188)(189 190 191 192)(193 194 195 196)(197 198 199 200)(201 202 203 204)(205 206 207 208)(209 210 211 212)(213 214 215 216)
(1 9)(2 12)(3 11)(4 10)(5 84)(6 83)(7 82)(8 81)(13 142)(14 141)(15 144)(16 143)(17 146)(18 145)(19 148)(20 147)(21 150)(22 149)(23 152)(24 151)(25 105)(26 108)(27 107)(28 106)(29 138)(30 137)(31 140)(32 139)(33 114)(34 113)(35 116)(36 115)(37 118)(38 117)(39 120)(40 119)(41 122)(42 121)(43 124)(44 123)(45 126)(46 125)(47 128)(48 127)(49 130)(50 129)(51 132)(52 131)(53 153)(54 156)(55 155)(56 154)(57 171)(58 170)(59 169)(60 172)(61 175)(62 174)(63 173)(64 176)(65 179)(66 178)(67 177)(68 180)(69 183)(70 182)(71 181)(72 184)(73 187)(74 186)(75 185)(76 188)(77 214)(78 213)(79 216)(80 215)(85 193)(86 196)(87 195)(88 194)(89 197)(90 200)(91 199)(92 198)(93 201)(94 204)(95 203)(96 202)(97 205)(98 208)(99 207)(100 206)(101 209)(102 212)(103 211)(104 210)(109 168)(110 167)(111 166)(112 165)(133 163)(134 162)(135 161)(136 164)(157 189)(158 192)(159 191)(160 190)

G:=sub<Sym(216)| (1,10)(2,11)(3,12)(4,9)(5,83)(6,84)(7,81)(8,82)(13,141)(14,142)(15,143)(16,144)(17,145)(18,146)(19,147)(20,148)(21,149)(22,150)(23,151)(24,152)(25,106)(26,107)(27,108)(28,105)(29,139)(30,140)(31,137)(32,138)(33,115)(34,116)(35,113)(36,114)(37,119)(38,120)(39,117)(40,118)(41,123)(42,124)(43,121)(44,122)(45,127)(46,128)(47,125)(48,126)(49,131)(50,132)(51,129)(52,130)(53,154)(54,155)(55,156)(56,153)(57,172)(58,169)(59,170)(60,171)(61,176)(62,173)(63,174)(64,175)(65,180)(66,177)(67,178)(68,179)(69,184)(70,181)(71,182)(72,183)(73,188)(74,185)(75,186)(76,187)(77,215)(78,216)(79,213)(80,214)(85,196)(86,193)(87,194)(88,195)(89,200)(90,197)(91,198)(92,199)(93,204)(94,201)(95,202)(96,203)(97,208)(98,205)(99,206)(100,207)(101,212)(102,209)(103,210)(104,211)(109,167)(110,168)(111,165)(112,166)(133,164)(134,161)(135,162)(136,163)(157,192)(158,189)(159,190)(160,191), (1,162,182)(2,183,163)(3,164,184)(4,181,161)(5,177,132)(6,129,178)(7,179,130)(8,131,180)(9,70,134)(10,135,71)(11,72,136)(12,133,69)(13,74,30)(14,31,75)(15,76,32)(16,29,73)(17,216,87)(18,88,213)(19,214,85)(20,86,215)(21,109,89)(22,90,110)(23,111,91)(24,92,112)(25,45,63)(26,64,46)(27,47,61)(28,62,48)(33,156,96)(34,93,153)(35,154,94)(36,95,155)(37,158,98)(38,99,159)(39,160,100)(40,97,157)(41,170,104)(42,101,171)(43,172,102)(44,103,169)(49,65,82)(50,83,66)(51,67,84)(52,81,68)(53,201,113)(54,114,202)(55,203,115)(56,116,204)(57,209,121)(58,122,210)(59,211,123)(60,124,212)(77,148,193)(78,194,145)(79,146,195)(80,196,147)(105,173,126)(106,127,174)(107,175,128)(108,125,176)(117,191,207)(118,208,192)(119,189,205)(120,206,190)(137,186,142)(138,143,187)(139,188,144)(140,141,185)(149,167,200)(150,197,168)(151,165,198)(152,199,166), (1,211,112)(2,109,212)(3,209,110)(4,111,210)(5,78,99)(6,100,79)(7,80,97)(8,98,77)(9,165,103)(10,104,166)(11,167,101)(12,102,168)(13,153,128)(14,125,154)(15,155,126)(16,127,156)(17,120,50)(18,51,117)(19,118,52)(20,49,119)(21,124,163)(22,164,121)(23,122,161)(24,162,123)(25,115,188)(26,185,116)(27,113,186)(28,187,114)(29,174,96)(30,93,175)(31,176,94)(32,95,173)(33,73,106)(34,107,74)(35,75,108)(36,105,76)(37,148,131)(38,132,145)(39,146,129)(40,130,147)(41,152,135)(42,136,149)(43,150,133)(44,134,151)(45,55,144)(46,141,56)(47,53,142)(48,143,54)(57,90,184)(58,181,91)(59,92,182)(60,183,89)(61,201,137)(62,138,202)(63,203,139)(64,140,204)(65,189,86)(66,87,190)(67,191,88)(68,85,192)(69,172,197)(70,198,169)(71,170,199)(72,200,171)(81,214,208)(82,205,215)(83,216,206)(84,207,213)(157,179,196)(158,193,180)(159,177,194)(160,195,178), (1,49,201)(2,202,50)(3,51,203)(4,204,52)(5,72,155)(6,156,69)(7,70,153)(8,154,71)(9,93,130)(10,131,94)(11,95,132)(12,129,96)(13,97,169)(14,170,98)(15,99,171)(16,172,100)(17,109,62)(18,63,110)(19,111,64)(20,61,112)(21,28,87)(22,88,25)(23,26,85)(24,86,27)(29,102,39)(30,40,103)(31,104,37)(32,38,101)(33,133,178)(34,179,134)(35,135,180)(36,177,136)(41,158,75)(42,76,159)(43,160,73)(44,74,157)(45,90,213)(46,214,91)(47,92,215)(48,216,89)(53,182,82)(54,83,183)(55,184,84)(56,81,181)(57,207,144)(58,141,208)(59,205,142)(60,143,206)(65,113,162)(66,163,114)(67,115,164)(68,161,116)(77,125,199)(78,200,126)(79,127,197)(80,198,128)(105,194,149)(106,150,195)(107,196,151)(108,152,193)(117,139,209)(118,210,140)(119,137,211)(120,212,138)(121,191,188)(122,185,192)(123,189,186)(124,187,190)(145,167,173)(146,174,168)(147,165,175)(148,176,166), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192)(193,194,195,196)(197,198,199,200)(201,202,203,204)(205,206,207,208)(209,210,211,212)(213,214,215,216), (1,9)(2,12)(3,11)(4,10)(5,84)(6,83)(7,82)(8,81)(13,142)(14,141)(15,144)(16,143)(17,146)(18,145)(19,148)(20,147)(21,150)(22,149)(23,152)(24,151)(25,105)(26,108)(27,107)(28,106)(29,138)(30,137)(31,140)(32,139)(33,114)(34,113)(35,116)(36,115)(37,118)(38,117)(39,120)(40,119)(41,122)(42,121)(43,124)(44,123)(45,126)(46,125)(47,128)(48,127)(49,130)(50,129)(51,132)(52,131)(53,153)(54,156)(55,155)(56,154)(57,171)(58,170)(59,169)(60,172)(61,175)(62,174)(63,173)(64,176)(65,179)(66,178)(67,177)(68,180)(69,183)(70,182)(71,181)(72,184)(73,187)(74,186)(75,185)(76,188)(77,214)(78,213)(79,216)(80,215)(85,193)(86,196)(87,195)(88,194)(89,197)(90,200)(91,199)(92,198)(93,201)(94,204)(95,203)(96,202)(97,205)(98,208)(99,207)(100,206)(101,209)(102,212)(103,211)(104,210)(109,168)(110,167)(111,166)(112,165)(133,163)(134,162)(135,161)(136,164)(157,189)(158,192)(159,191)(160,190)>;

G:=Group( (1,10)(2,11)(3,12)(4,9)(5,83)(6,84)(7,81)(8,82)(13,141)(14,142)(15,143)(16,144)(17,145)(18,146)(19,147)(20,148)(21,149)(22,150)(23,151)(24,152)(25,106)(26,107)(27,108)(28,105)(29,139)(30,140)(31,137)(32,138)(33,115)(34,116)(35,113)(36,114)(37,119)(38,120)(39,117)(40,118)(41,123)(42,124)(43,121)(44,122)(45,127)(46,128)(47,125)(48,126)(49,131)(50,132)(51,129)(52,130)(53,154)(54,155)(55,156)(56,153)(57,172)(58,169)(59,170)(60,171)(61,176)(62,173)(63,174)(64,175)(65,180)(66,177)(67,178)(68,179)(69,184)(70,181)(71,182)(72,183)(73,188)(74,185)(75,186)(76,187)(77,215)(78,216)(79,213)(80,214)(85,196)(86,193)(87,194)(88,195)(89,200)(90,197)(91,198)(92,199)(93,204)(94,201)(95,202)(96,203)(97,208)(98,205)(99,206)(100,207)(101,212)(102,209)(103,210)(104,211)(109,167)(110,168)(111,165)(112,166)(133,164)(134,161)(135,162)(136,163)(157,192)(158,189)(159,190)(160,191), (1,162,182)(2,183,163)(3,164,184)(4,181,161)(5,177,132)(6,129,178)(7,179,130)(8,131,180)(9,70,134)(10,135,71)(11,72,136)(12,133,69)(13,74,30)(14,31,75)(15,76,32)(16,29,73)(17,216,87)(18,88,213)(19,214,85)(20,86,215)(21,109,89)(22,90,110)(23,111,91)(24,92,112)(25,45,63)(26,64,46)(27,47,61)(28,62,48)(33,156,96)(34,93,153)(35,154,94)(36,95,155)(37,158,98)(38,99,159)(39,160,100)(40,97,157)(41,170,104)(42,101,171)(43,172,102)(44,103,169)(49,65,82)(50,83,66)(51,67,84)(52,81,68)(53,201,113)(54,114,202)(55,203,115)(56,116,204)(57,209,121)(58,122,210)(59,211,123)(60,124,212)(77,148,193)(78,194,145)(79,146,195)(80,196,147)(105,173,126)(106,127,174)(107,175,128)(108,125,176)(117,191,207)(118,208,192)(119,189,205)(120,206,190)(137,186,142)(138,143,187)(139,188,144)(140,141,185)(149,167,200)(150,197,168)(151,165,198)(152,199,166), (1,211,112)(2,109,212)(3,209,110)(4,111,210)(5,78,99)(6,100,79)(7,80,97)(8,98,77)(9,165,103)(10,104,166)(11,167,101)(12,102,168)(13,153,128)(14,125,154)(15,155,126)(16,127,156)(17,120,50)(18,51,117)(19,118,52)(20,49,119)(21,124,163)(22,164,121)(23,122,161)(24,162,123)(25,115,188)(26,185,116)(27,113,186)(28,187,114)(29,174,96)(30,93,175)(31,176,94)(32,95,173)(33,73,106)(34,107,74)(35,75,108)(36,105,76)(37,148,131)(38,132,145)(39,146,129)(40,130,147)(41,152,135)(42,136,149)(43,150,133)(44,134,151)(45,55,144)(46,141,56)(47,53,142)(48,143,54)(57,90,184)(58,181,91)(59,92,182)(60,183,89)(61,201,137)(62,138,202)(63,203,139)(64,140,204)(65,189,86)(66,87,190)(67,191,88)(68,85,192)(69,172,197)(70,198,169)(71,170,199)(72,200,171)(81,214,208)(82,205,215)(83,216,206)(84,207,213)(157,179,196)(158,193,180)(159,177,194)(160,195,178), (1,49,201)(2,202,50)(3,51,203)(4,204,52)(5,72,155)(6,156,69)(7,70,153)(8,154,71)(9,93,130)(10,131,94)(11,95,132)(12,129,96)(13,97,169)(14,170,98)(15,99,171)(16,172,100)(17,109,62)(18,63,110)(19,111,64)(20,61,112)(21,28,87)(22,88,25)(23,26,85)(24,86,27)(29,102,39)(30,40,103)(31,104,37)(32,38,101)(33,133,178)(34,179,134)(35,135,180)(36,177,136)(41,158,75)(42,76,159)(43,160,73)(44,74,157)(45,90,213)(46,214,91)(47,92,215)(48,216,89)(53,182,82)(54,83,183)(55,184,84)(56,81,181)(57,207,144)(58,141,208)(59,205,142)(60,143,206)(65,113,162)(66,163,114)(67,115,164)(68,161,116)(77,125,199)(78,200,126)(79,127,197)(80,198,128)(105,194,149)(106,150,195)(107,196,151)(108,152,193)(117,139,209)(118,210,140)(119,137,211)(120,212,138)(121,191,188)(122,185,192)(123,189,186)(124,187,190)(145,167,173)(146,174,168)(147,165,175)(148,176,166), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192)(193,194,195,196)(197,198,199,200)(201,202,203,204)(205,206,207,208)(209,210,211,212)(213,214,215,216), (1,9)(2,12)(3,11)(4,10)(5,84)(6,83)(7,82)(8,81)(13,142)(14,141)(15,144)(16,143)(17,146)(18,145)(19,148)(20,147)(21,150)(22,149)(23,152)(24,151)(25,105)(26,108)(27,107)(28,106)(29,138)(30,137)(31,140)(32,139)(33,114)(34,113)(35,116)(36,115)(37,118)(38,117)(39,120)(40,119)(41,122)(42,121)(43,124)(44,123)(45,126)(46,125)(47,128)(48,127)(49,130)(50,129)(51,132)(52,131)(53,153)(54,156)(55,155)(56,154)(57,171)(58,170)(59,169)(60,172)(61,175)(62,174)(63,173)(64,176)(65,179)(66,178)(67,177)(68,180)(69,183)(70,182)(71,181)(72,184)(73,187)(74,186)(75,185)(76,188)(77,214)(78,213)(79,216)(80,215)(85,193)(86,196)(87,195)(88,194)(89,197)(90,200)(91,199)(92,198)(93,201)(94,204)(95,203)(96,202)(97,205)(98,208)(99,207)(100,206)(101,209)(102,212)(103,211)(104,210)(109,168)(110,167)(111,166)(112,165)(133,163)(134,162)(135,161)(136,164)(157,189)(158,192)(159,191)(160,190) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(4,9),(5,83),(6,84),(7,81),(8,82),(13,141),(14,142),(15,143),(16,144),(17,145),(18,146),(19,147),(20,148),(21,149),(22,150),(23,151),(24,152),(25,106),(26,107),(27,108),(28,105),(29,139),(30,140),(31,137),(32,138),(33,115),(34,116),(35,113),(36,114),(37,119),(38,120),(39,117),(40,118),(41,123),(42,124),(43,121),(44,122),(45,127),(46,128),(47,125),(48,126),(49,131),(50,132),(51,129),(52,130),(53,154),(54,155),(55,156),(56,153),(57,172),(58,169),(59,170),(60,171),(61,176),(62,173),(63,174),(64,175),(65,180),(66,177),(67,178),(68,179),(69,184),(70,181),(71,182),(72,183),(73,188),(74,185),(75,186),(76,187),(77,215),(78,216),(79,213),(80,214),(85,196),(86,193),(87,194),(88,195),(89,200),(90,197),(91,198),(92,199),(93,204),(94,201),(95,202),(96,203),(97,208),(98,205),(99,206),(100,207),(101,212),(102,209),(103,210),(104,211),(109,167),(110,168),(111,165),(112,166),(133,164),(134,161),(135,162),(136,163),(157,192),(158,189),(159,190),(160,191)], [(1,162,182),(2,183,163),(3,164,184),(4,181,161),(5,177,132),(6,129,178),(7,179,130),(8,131,180),(9,70,134),(10,135,71),(11,72,136),(12,133,69),(13,74,30),(14,31,75),(15,76,32),(16,29,73),(17,216,87),(18,88,213),(19,214,85),(20,86,215),(21,109,89),(22,90,110),(23,111,91),(24,92,112),(25,45,63),(26,64,46),(27,47,61),(28,62,48),(33,156,96),(34,93,153),(35,154,94),(36,95,155),(37,158,98),(38,99,159),(39,160,100),(40,97,157),(41,170,104),(42,101,171),(43,172,102),(44,103,169),(49,65,82),(50,83,66),(51,67,84),(52,81,68),(53,201,113),(54,114,202),(55,203,115),(56,116,204),(57,209,121),(58,122,210),(59,211,123),(60,124,212),(77,148,193),(78,194,145),(79,146,195),(80,196,147),(105,173,126),(106,127,174),(107,175,128),(108,125,176),(117,191,207),(118,208,192),(119,189,205),(120,206,190),(137,186,142),(138,143,187),(139,188,144),(140,141,185),(149,167,200),(150,197,168),(151,165,198),(152,199,166)], [(1,211,112),(2,109,212),(3,209,110),(4,111,210),(5,78,99),(6,100,79),(7,80,97),(8,98,77),(9,165,103),(10,104,166),(11,167,101),(12,102,168),(13,153,128),(14,125,154),(15,155,126),(16,127,156),(17,120,50),(18,51,117),(19,118,52),(20,49,119),(21,124,163),(22,164,121),(23,122,161),(24,162,123),(25,115,188),(26,185,116),(27,113,186),(28,187,114),(29,174,96),(30,93,175),(31,176,94),(32,95,173),(33,73,106),(34,107,74),(35,75,108),(36,105,76),(37,148,131),(38,132,145),(39,146,129),(40,130,147),(41,152,135),(42,136,149),(43,150,133),(44,134,151),(45,55,144),(46,141,56),(47,53,142),(48,143,54),(57,90,184),(58,181,91),(59,92,182),(60,183,89),(61,201,137),(62,138,202),(63,203,139),(64,140,204),(65,189,86),(66,87,190),(67,191,88),(68,85,192),(69,172,197),(70,198,169),(71,170,199),(72,200,171),(81,214,208),(82,205,215),(83,216,206),(84,207,213),(157,179,196),(158,193,180),(159,177,194),(160,195,178)], [(1,49,201),(2,202,50),(3,51,203),(4,204,52),(5,72,155),(6,156,69),(7,70,153),(8,154,71),(9,93,130),(10,131,94),(11,95,132),(12,129,96),(13,97,169),(14,170,98),(15,99,171),(16,172,100),(17,109,62),(18,63,110),(19,111,64),(20,61,112),(21,28,87),(22,88,25),(23,26,85),(24,86,27),(29,102,39),(30,40,103),(31,104,37),(32,38,101),(33,133,178),(34,179,134),(35,135,180),(36,177,136),(41,158,75),(42,76,159),(43,160,73),(44,74,157),(45,90,213),(46,214,91),(47,92,215),(48,216,89),(53,182,82),(54,83,183),(55,184,84),(56,81,181),(57,207,144),(58,141,208),(59,205,142),(60,143,206),(65,113,162),(66,163,114),(67,115,164),(68,161,116),(77,125,199),(78,200,126),(79,127,197),(80,198,128),(105,194,149),(106,150,195),(107,196,151),(108,152,193),(117,139,209),(118,210,140),(119,137,211),(120,212,138),(121,191,188),(122,185,192),(123,189,186),(124,187,190),(145,167,173),(146,174,168),(147,165,175),(148,176,166)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144),(145,146,147,148),(149,150,151,152),(153,154,155,156),(157,158,159,160),(161,162,163,164),(165,166,167,168),(169,170,171,172),(173,174,175,176),(177,178,179,180),(181,182,183,184),(185,186,187,188),(189,190,191,192),(193,194,195,196),(197,198,199,200),(201,202,203,204),(205,206,207,208),(209,210,211,212),(213,214,215,216)], [(1,9),(2,12),(3,11),(4,10),(5,84),(6,83),(7,82),(8,81),(13,142),(14,141),(15,144),(16,143),(17,146),(18,145),(19,148),(20,147),(21,150),(22,149),(23,152),(24,151),(25,105),(26,108),(27,107),(28,106),(29,138),(30,137),(31,140),(32,139),(33,114),(34,113),(35,116),(36,115),(37,118),(38,117),(39,120),(40,119),(41,122),(42,121),(43,124),(44,123),(45,126),(46,125),(47,128),(48,127),(49,130),(50,129),(51,132),(52,131),(53,153),(54,156),(55,155),(56,154),(57,171),(58,170),(59,169),(60,172),(61,175),(62,174),(63,173),(64,176),(65,179),(66,178),(67,177),(68,180),(69,183),(70,182),(71,181),(72,184),(73,187),(74,186),(75,185),(76,188),(77,214),(78,213),(79,216),(80,215),(85,193),(86,196),(87,195),(88,194),(89,197),(90,200),(91,199),(92,198),(93,201),(94,204),(95,203),(96,202),(97,205),(98,208),(99,207),(100,206),(101,209),(102,212),(103,211),(104,210),(109,168),(110,167),(111,166),(112,165),(133,163),(134,162),(135,161),(136,164),(157,189),(158,192),(159,191),(160,190)]])

114 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3M4A4B6A···6CM
order122222223···3446···6
size11112254542···254542···2

114 irreducible representations

dim111112222
type++++++++
imageC1C2C2C2C2S3D4D6C3⋊D4
kernelC2×C3315D4C2×C335C4C3315D4C22×C33⋊C2C63C2×C62C32×C6C62C3×C6
# reps114111323952

Matrix representation of C2×C3315D4 in GL6(𝔽13)

100000
010000
0012000
0001200
0000120
0000012
,
300000
090000
009000
000300
000010
000001
,
100000
010000
009000
000300
000030
000009
,
100000
010000
009000
000300
000090
000003
,
010000
1200000
0001200
001000
0000012
000010
,
010000
100000
000100
001000
000001
000010

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[3,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,3],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C2×C3315D4 in GAP, Magma, Sage, TeX

C_2\times C_3^3\rtimes_{15}D_4
% in TeX

G:=Group("C2xC3^3:15D4");
// GroupNames label

G:=SmallGroup(432,729);
// by ID

G=gap.SmallGroup(432,729);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,254,1124,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=f*b*f=b^-1,c*d=d*c,e*c*e^-1=f*c*f=c^-1,e*d*e^-1=f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽